

An Improved Stochastic Unit Commitment Formulation to Accommodate Wind Uncertainty

Canan Uckun,¹ Audun Botterud,¹ John R. Birge²

¹Argonne National Laboratory

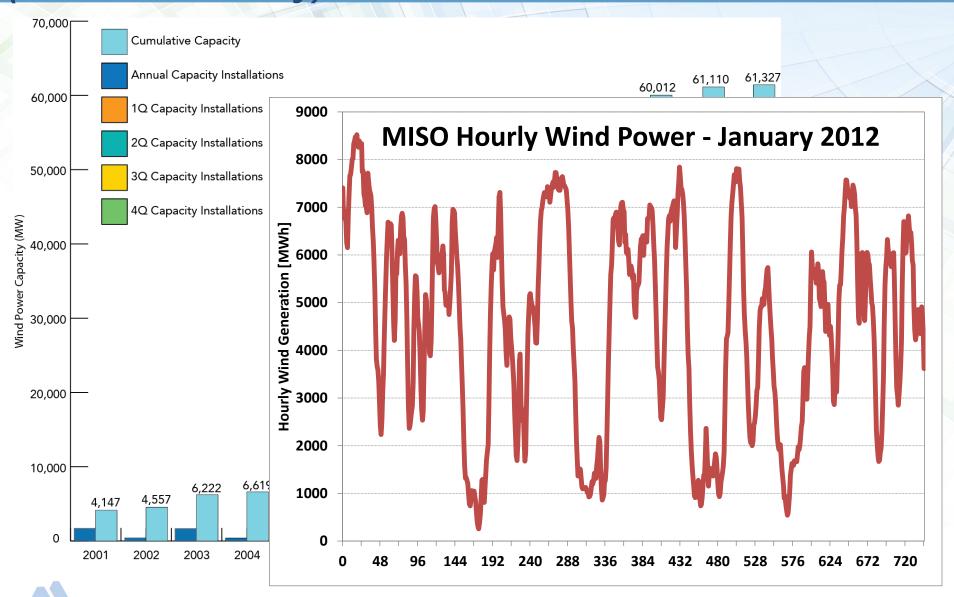
²The University of Chicago

cuckun@anl.gov, abotterud@anl.gov, john.birge@chicagobooth.edu

FERC Software Conference, June 24, 2014

Outline

- Motivation
- ☐ Stochastic Unit Commitment Problem
- ☐ "Bucket" Approach
- ☐ Computational Results
- ☐ Conclusion and Future Work



U.S. Wind Power Capacity Reaches 61 GW (318 GW Globally)

U.S. Wind Power Capacity Reaches 61 GW (318 GW Globally)

Motivation

Goal

• The U.S. Department of Energy's vision is to supply 20% of electricity consumption from wind energy by 2030.

Challenges

- Increase in variability and uncertainty
- Forecasting wind power

Potential Solutions

- Increase operating reserves
- Stochastic Programming

Why Stochastic Programming?

- Weather-driven renewables can be difficult to forecast and increase the uncertainty in the electric power grid.
- Stochastic programming could serve as a tool to address the increased uncertainty in power system and electricity market operations.
- Stochastic programming is a powerful tool in dealing with uncertainty, but it has advantages and disadvantages.

+

- is based on axioms of foundational decision theory
- considers uncertainty holistically rather than focusing on worst case scenarios
- can effectively hedge against randomness

- requires probabilistic inputs which may be hard to obtain or estimate
- computationally hard to solve

Outline

- Motivation
- ☐ Stochastic Unit Commitment Problem
- ☐ "Bucket" Approach
- ☐ Computational Results
- ☐ Conclusion and Future Work

Stochastic Unit Commitment Problem

Minimize {fuel cost + start-up cost + load shedding penalty}

Decision Variables

First stage:

Unit on/off

Second stage:

Thermal dispatch
Wind dispatch
Transmission flow

Constraints

- Load balance
- Min up-time/down-time
- Ramp up/down
- Transmission limits
- Generation capacity limits
- Spinning reserves

Two-stage Stochastic Unit Commitment Problem

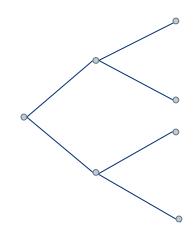
$$\min_{u,x,f,w,h,\delta} \sum_{s \in S} p_s \sum_{t=1}^{T} \sum_{i \in I} \left[g_i(x_{it}^s) \cdot u_{it}^s + h_{it}^s + c_p \sum_{t=1}^{T} \sum_{n \in N} \delta_{nt}^s \right]$$

s.t.
$$u, x, f, w, h, \delta \in C_s, s \in S$$

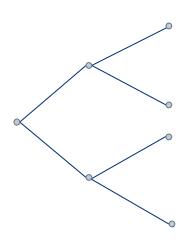
$$u_{it}^s = u_{it} \ \forall i, \forall s \in S, t \in \{1,...,T\}$$

Across scenarios

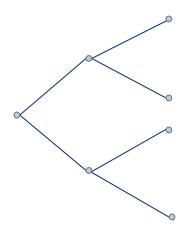
- u: Unit on/off
- x: Generation output
- f: Transmission flow
- w: Wind dispatch
- *h* : Start-up cost
- δ : Load shedding amount
- c_p : Load shedding penalty
- p_s : Probability of scenario s
- S: Scenario set
- *I*: Set of thermal generators
- T: Number of periods
- C_s : Technological constraints


	Two-stage	
Dynamic decisions	X	
History dependency	X	
#Binary Variables	T x I	

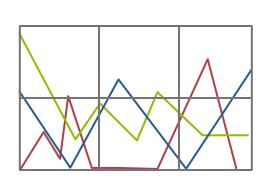
	Two-stage	Multi-stage
Dynamic decisions	X	✓
History dependency	X	✓
#Binary Variables	T x I	(2 [⊤] -1) x I

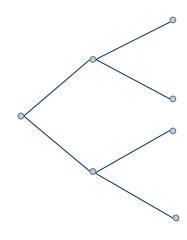

	Two-stage	Multi-stage
Dynamic decisions	×	✓
History dependency	×	✓
#Binary Variables	T x I	(2 [⊤] -1) x I

	Two-stage	Multi-stage
Dynamic decisions	X	✓
History dependency	X	✓
#Binary Variables	T x I	(2 [⊤] -1) x I



	Two-stage	Multi-stage
Dynamic decisions	×	✓
History dependency	X	✓
#Binary Variables	T x I	(2 [⊤] -1) x I





	Two-stage	"Bucket"	Multi-stage
Dynamic decisions	X	√	✓
History dependency	X	X	✓
#Binary Variables	T x I	$B \times T \times I $	(2 [⊤] -1) x I

Outline

- Motivation
- ☐ Stochastic Unit Commitment Problem
- ☐ "Bucket" Approach
- ☐ Computational Results
- ☐ Conclusion and Future Work

Alternative Approach with "Buckets"

- Stochastic programming models tend to result in better policies with more scenarios, capturing the full range of uncertainty.
- To solve the problem with a large number of scenarios (w/o forcing a tree structure) while capturing the multi-stage decision process, we consider a new approach:
 - Put scenarios into "buckets" according to
 - 1. their deviation from the average forecast (D)
 - 2. their percentiles (P)
 - Enforce the "non-anticipativity" constraints for "buckets" as opposed to across all scenarios

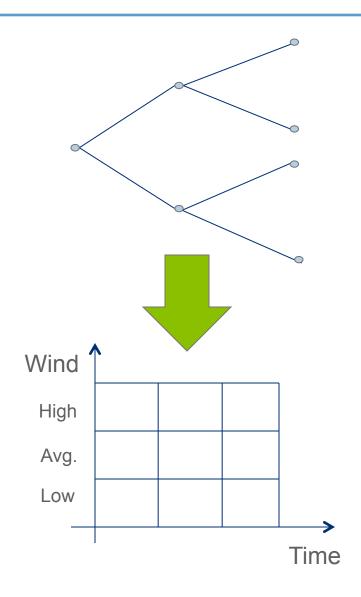
Stochastic Unit Commitment Problem

$$\min_{u,x,f,w,h,\delta} \sum_{s \in S} p_s \sum_{t=1}^{T} \sum_{i \in I} \left[g_i(x_{it}^s) \cdot u_{it}^s + h_{it}^s + c_p \sum_{t=1}^{T} \sum_{n \in N} \delta_{nt}^s \right]$$

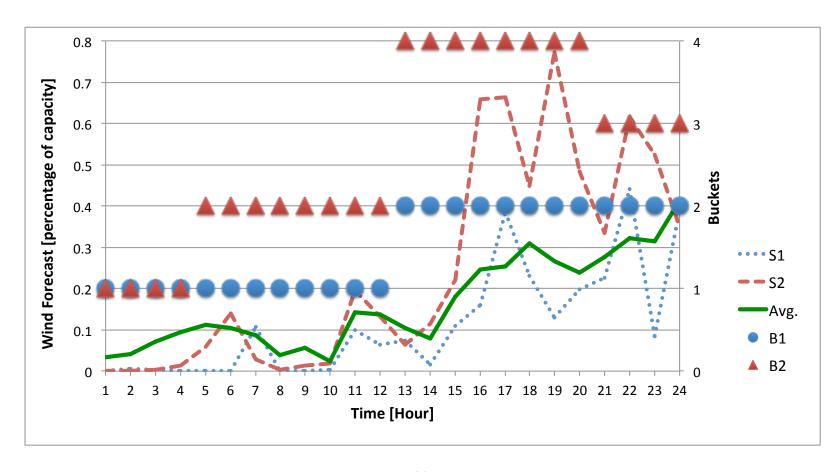
Across "buckets"

s.t.
$$u, x, f, w, h, \delta \in C_s, s \in S$$

$$u_{it}^{s,b} = u_{it}^{b} \ \forall i, \forall s \in S, t \in \{1,...,T\}, b = B(s,t)$$


B: Set of buckets

B(s,t): Bucket assignment of scenario s in period t.


"Bucket" Approach

- Tradeoff
 - More variables versus flexibility
- Advantages of buckets
 - Captures multi-stage decision process
 - · no need to enforce formal tree structure
 - Takes into account extreme scenarios
 - No scenario reduction
 - May reduce computational burden
 - relaxation of traditional 2-stage formulation

"Bucket" Example

4 Buckets 6 Time blocks

- 1 50% below average or below
- 2 Between 50% below average and average
- 3 Between average and 50% above average
- 4 50% above average and above

Outline

- Motivation
- ☐ Stochastic Unit Commitment Problem
- ☐ "Bucket" Approach
- ☐ Computational Results
- ☐ Conclusion and Future Work

Solution Tool

We use Sandia National Laboratories' optimization tool Coopr, in particular *PySP* (*Python-based Stochastic Programming*) modeling and solver library [Watson et al. 2012]. The tool can solve the problem in two ways:

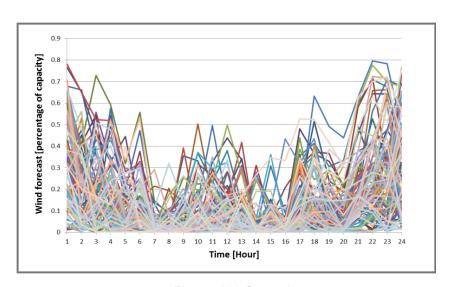
- Extensive form (EF)
- Progressive Hedging (PH) [Rockafellar and Wets 1991]
 - Scenario-based decomposition scheme
 - Relaxation of non-anticipativity constraints
 - Has been used for unit commitment [e.g. Takriti et al. 1996]
 - A heuristic algorithm

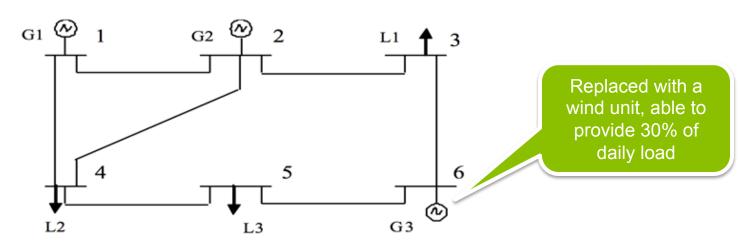
Problem setting and computational platform

- Hourly decisions over a day
- 4 buckets in each time period
- Divide the time horizon into 6 time blocks
- 1,000 wind forecasts [EWITS]

Progressive Hedging

- Cost proportional penalty factor p
 - $-\lambda$ is the fraction
- MIP gap γ
- # of iterations before fixing, μ
- Enable Watson-Woodruff extensions
- Termdiff termination criteria for PH




Figure: 100 Scenarios

Computational Platform

- 2.6 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory
- Coopr 3.3.7114
- Solver: CPLEX 12.5

Illustrative 6-Bus System

6-Bus system* with

- 2 thermal generators
- 3 loads

	Bus	Unit (Cost Coefficient	S	Pmax	Pmin	Ini.	Min	Min	Ramp	Start	Fuel
	No.	U	b	c	(MW)	(MW)	State	Off	On	(MW/h)	Up	Price
			(MBtu/	(MBtu/			(h)	(h)	(h)		(MBtu)	(\$/
			MW)	MW^2)								MBtu)
G1	1	176.95	13.51	0.0004	220	100	4	4	4	55	10	1
G2	2	129.98	32.63	0.001	100	10	3	3	2	50	200	1

^{*} The details of the system and parameters are available at: http://motor.ece.iit.edu/data/

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
100	60,396
500	60,756

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
100	60,396
500	60,756

Solution quality and run times for Extensive Form for 6-Bus system

EF	Two-stage						
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap			
100(D) 100(P)	62,800	79	62,703	0.15			
500(D) 500(P)	63,306	1,505	63,041	0.42			

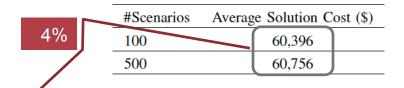
MIP gap = 0.5%

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
100	60,396
500	60,756

Solution quality and run times for Extensive Form for 6-Bus system

EF	Two-stage						
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap			
100(D) 100(P)	62,800	79	62,703	0.15			
500(D) 500(P)	63,306	1,505	63,041	0.42			


MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 6-Bus system

PH	Two-stage			
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations	
100(D) 100(P)	62,771	174	14	
500(D) 500(P)	63,278	1,377	12	

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 6-BUS SYSTEM

EF		Two-stage		
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap
100(D) 100(P)	62,800	79	62,703	0.15
500(D) 500(P)	63,306	1,505	63,041	0.42

MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 6-Bus system

PH		Two-stage	
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations
100(D) 100(P)	62,771	174	14
500(D) 500(P)	63,278	1,377	12

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
100	60,396
500	60,756

Solution quality and run times for Extensive Form for 6-Bus system

EF	F Two-stage				Bucket			
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap
100(D) 100(P)	62,800	79	62,703	0.15	62,285 62,459	140 113	62,206 62,340	0.13 0.19
500(D) 500(P)	63,306	1,505	63,041	0.42	62,897 62,750	2,365 2,039	62,589 62,478	0.49 0.43

MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 6-Bus system

PH	Two-stage			Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations	Solution Cost (\$)	Run Time (sec)	#Iterations
100(D) 100(P)	62,771	174	14	62,345 63,356	449 912	21 51
500(D) 500(P)	63,278	1,377	12	63,253 63,247	4,416 3,942	47 40

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
100	60,396
500	60,756

0.8-0.9% decrease

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 6-BUS SYSTEM

EF		Two-stag	e			Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap	Solution Cost ((\$) Run Time (sec)	Best Bound (\$)	%Gap
100(D) 100(P)	62,800	79	62,703	0.15	62,285 62,459	140 113	62,206 62,340	0.13 0.19
500(D) 500(P)	63,306	1,505	63,041	0.42	62,897 62,750	2,365 2,039	62,589 62,478	0.49 0.43

MIP gap = 0.5%

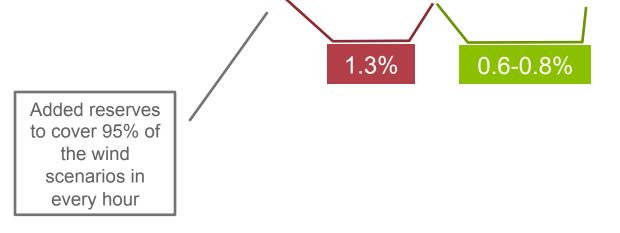
Solution quality and run times for Progressive Hedging for 6-Bus system

PH	Two-stage			Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations	Solution Cost (\$)	Run Time (sec)	#Iterations
100(D) 100(P)	62,771	174	14	62,345 63,356	449 912	21 51
500(D) 500(P)	63,278	1,377	12	63,253 63,247	4,416 3,942	47 40

6-Bus Results II - Deterministic

DETERMINISTIC SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios	Solution Cost (\$)
100	59,412
500	66,905


Added reserves to cover 95% of the wind scenarios in every hour

6-Bus Results III - Policy

Solution costs (\$) as a result of Policy analysis for deterministic, two-stage and bucket approach models for 6-Bus system

	Deterministic	Two-	stage	Buo	cket
Instances		EF	PH	EF	PH
100(D) 100(P)	64,124	63,306	63,306	62,817 62,837	62,796 63,616
500(D) 500(P)	63,918	63,089	63,089	62,717 62,720	63,054 63,199

IEEE RTS-96 24-Bus

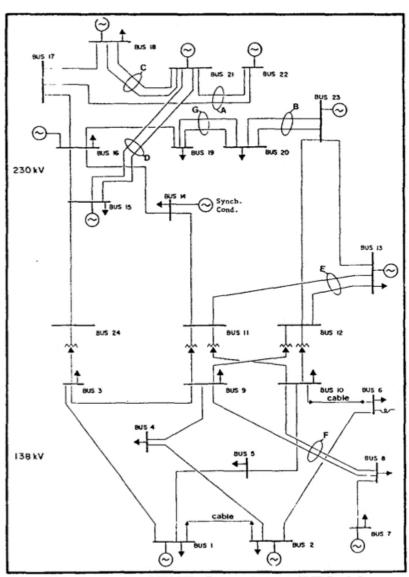


Figure 1 - IEEE One Area RTS-96

- 24-Bus
- 32 generators thermal, hydro
- 34 lines
- 17 loads
- Nuclear plant in Bus 21 is replaced with a wind unit (can provide 30% of the daily load on average)

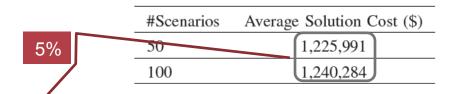
[IEEE Reliability Test System 1996]

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
50	1,225,991
100	1,240,284

Solution quality and run times for Extensive form for 24-Bus system

EF	Two-stage					
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap		
50(D) 50(P)	1,291,588	162	1,285,274	0.49		
100(D) 100(P)	1,308,497	440	1,305,396	0.24		


MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 24-Bus system

PH	Two-stage				
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations		
50(D) 50(P)	1,292,777	233	1		
100(D) 100(P)	1,308,497	512	1		

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 24-BUS SYSTEM

EF		Two-stage		
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap
50(D) 50(P)	1,291,588	162	1,285,274	0.49
100(D) 100(P)	1,308,497	440	1,305,396	0.24

MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 24-Bus system

PH	Two-stage				
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations		
50(D) 50(P)	1,292,777	233	1		
100(D) 100(P)	1,308,497	512	1		

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
50	1,225,991
100	1,240,284

Solution quality and run times for Extensive form for 24-Bus system

EF	Two-stage				Bucket			
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap
50(D) 50(P)	1,291,588	162	1,285,274	0.49	1,279,894 1,279,660	541 671	1,275,468 1,273,969	0.35 0.44
100(D) 100(P)	1,308,497	440	1,305,396	0.24	1,295,581 1,294,426	2,418 3,414	1,291,348 1,290,313	0.33 0.32

MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 24-Bus system

PH	Two-stage				
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations		
50(D) 50(P)	1,292,777	233	1		
100(D) 100(P)	1,308,497	512	1		

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
50	1,225,991
100	1,240,284

Solution quality and run times for Extensive form for 24-Bus system

EF	Two-stage				Bucket			
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap
50(D) 50(P)	1,291,588	162	1,285,274	0.49	1,279,894 1,279,660	541 671	1,275,468 1,273,969	0.35 0.44
100(D) 100(P)	1,308,497	440	1,305,396	0.24	1,295,581 1,294,426	2,418 3,414	1,291,348 1,290,313	0.33 0.32

MIP gap = 0.5%

SOLUTION QUALITY AND RUN TIMES FOR PROGRESSIVE HEDGING FOR 24-BUS SYSTEM

PH		Two-stage		Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations	Solution Cost (\$)	Run Time (sec)	#Iterations
50(D) 50(P)	1,292,777	233	1	1,281,393 1,278,987	438 437	3 2
100(D) 100(P)	1,308,497	512	1	1,295,192 1,294,390	1,088 1,267	3 2

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
50	1,225,991
100	1,240,284

Solution quality and run times for Extensive form for 24-Bus system

EF	Two-stage					Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap
50(D) 50(P)	1,291,588	162	1,285,274	0.49	1,279,894 1,279,660	541 671	1,275,468 1,273,969	0.35 0.44
100(D) 100(P)	1,308,497	440	1,305,396	0.24	1,295,581 1,294,426	2,418 3,414	1,291,348 1,290,313	0.33 0.32

MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 24-Bus system

PH	Two-stage			Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations	Solution Cost (\$)	Run Time (sec)	#Iterations
50(D) 50(P)	1,292,777	233	1	1,281,393 1,278,987	438 437	3 2
100(D) 100(P)	1,308,497	512	1	1,295,192 1,294,390	1,088 1,267	3 2

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios	Average Solution Cost (\$)
50	1,225,991
100	1,240,284

0.9-1% decrease

SOLUTION QUALITY AND RUN TIMES FOR EXPENSIVE FORM FOR 24-BUS SYSTEM

EF		Two-stag	e			Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap	Solution Cost (\$)	Run Time (sec)	Best Bound (\$)	%Gap
50(D) 50(P)	1,291,588	162	1,285,274	0.49	1,279,894 1,279,660	541 671	1,275,468 1,273,969	0.35 0.44
100(D) 100(P)	1,308,497	440	1,305,396	0.24	1,295,581 1,294,426	2,418 3,414	1,291,348 1,290,313	0.33 0.32

MIP gap = 0.5%

Solution quality and run times for Progressive Hedging for 24-Bus system

PH	Two-stage			Bucket		
Instances	Solution Cost (\$)	Run Time (sec)	#Iterations	Solution Cost (\$)	Run Time (sec)	#Iterations
50(D) 50(P)	1,292,777	233	1	1,281,393 1,278,987	438 437	3 2
100(D) 100(P)	1,308,497	512	1	1,295,192 1,294,390	1,088 1,267	3 2

Outline

- Motivation
- ☐ Stochastic Unit Commitment Problem
- ☐ "Bucket" Approach
- ☐ Computational Results
- ☐ Conclusion and Future Work

Conclusions and Future Work

- The methodology proposed improves on existing technology in three ways:
 - Lower cost solutions through increased flexibility,
 - -Greater robustness in solutions by enabling expanded scenario representations,
 - -Higher computational efficiency by reducing decision tree complexity.
- Computational results present up to 1% decrease in operational costs compared to two-stage formulation.
- Future work includes:
 - –Computational effort is a challenge. Potential solutions are:
 - Parallel computing,
 - Other decomposition techniques.
 - Developing methods for more effective "bucketing" of scenarios.
 - -Solving larger problems with more scenarios.
 - Investigating potential for improved pricing and financial incentives under stochastic scheduling.

References and Acknowledgement

- Uckun C., Botterud A., Birge J.R., "Improving Electricity Markets to Accommodate a Large-Scale Expansion of Renewable Energy," Proceedings IIE International Conference, Istanbul, Turkey, June 2013.
- Watson J.P., Woodruff D. L., Hart W. E., "PySP: modeling and solving stochastic programs in Python," *Mathematical Programming Computation*, Vol. 4, No. 2, pp. 109-149, June 2012.
- Takriti W., Birge J. R., Long E., "A stochastic model for the unit commitment problem," *IEEE Transactions on Power Systems*, Vol. 11, No. 3, pp. 1497-1508, Aug. 1996.
- R.T. Rockafeller and R.J.B. Wets, "Scenarios and policy aggregation in optimization under uncertainty,"
 Mathematics of Operations Research, vol. 16 no. 1, pp. 119–147, 1991.
- Eastern wind integration and transmission study (EWITS). NREL: Transmission Grid Integration Eastern Wind Dataset. 2013. NREL: Transmission Grid Integration. Eastern Wind Dataset. [ONLINE] Available at: http://www.nrel.gov/electricity/transmission/eastern wind methodology.html
- Pinson P., Papaefthymiou G., Klockl B., Nielsen H.A., Madsen H., "From Probabilistic Forecasts to Statistical Scenarios of Short-term Wind Power Production," *Wind Energy*, Vol. 12, No. 1, pp. 51–62, 2009.
- Reliability Test System Task Force, "The IEEE reliability test system –1996," IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010–1020, Aug.1999.

- Acknowledgement
 - Sponsor: University of Chicago Argonne National Laboratory Strategic Collaborative Initiative

An Improved Stochastic Unit Commitment Formulation to Accommodate Wind Uncertainty

Canan Uckun,¹ Audun Botterud,¹ John R. Birge²

¹Argonne National Laboratory

²The University of Chicago

cuckun@anl.gov, abotterud@anl.gov, john.birge@chicagobooth.edu

FERC Software Conference, June 24, 2014

